Riemann-Hilbert problems for the shapes formed by bodies dissolving, melting, and eroding in fluid flows
نویسنده
چکیده
The classical Stefan problem involves the motion of boundaries during phase transition, but this process can be greatly complicated by the presence of a fluid flow. Here, we consider a body undergoing material loss due to either dissolution (from molecular diffusion), melting (from thermodynamic phase change), or erosion (from fluid-mechanical stresses) in a fast-flowing fluid. In each case, the task of finding the shape formed by the shrinking body can be posed as a singular Riemann-Hilbert problem. A class of exact solutions captures the rounded surfaces formed during dissolution/melting, as well as the angular features formed during erosion, thus unifying these different physical processes under a common framework. This study, which merges boundary-layer theory, separated-flow theory, and Riemann-Hilbert analysis, represents a rare instance of an exactly solvable model for high-speed fluid flows with free boundaries.
منابع مشابه
A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function
By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...
متن کامل$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework
In the present work the space $L_{p;r} $ which is continuously embedded into $L_{p} $ is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...
متن کاملNumerical simulation of Laminar Free Convection Heat Transfer around Isothermal Concave and Convex Body Shapes
In the present research, free convection heat transfer from isothermal concave and convex body shapes is studied numerically. The body shapes investigated here, are bi-sphere, cylinder, prolate and cylinder with hemispherical ends; besides, they have the same height over width (H/D = 2). A Numerical simulation is implemented to obtain heat transfer and fluid flow from all of the geometries in a...
متن کاملGeochemistry and Tectonic Setting of Pleistocene Basaltic Lava Flows in the Shahre-Babak Area, NW of Kerman, Iran: Implication for the Evolution of Urumieh- Dokhtar Magmatic Assemblage
Pleistocene basaltic lava flows, consisting of trachybasalt and basaltic trachyandesite, cover an area north-northwest of Shahre-Babak in southeastern Iran. The whole rock chemistry indicates that the lavas are dominantly alkaline and mildly calc-alkaline. Variation diagrams of SiO2 with major and trace elements are consistent with fractional crystallization processes involving olivine, pyroxen...
متن کاملImplementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems
In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...
متن کامل